Affiliation:
1. Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
2. Centre for Environmental and Marine Studies, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
Abstract
The interaction between tide, river runoff, and wind in coastal lagoons induces complex salinity gradients, which are remarkable when the meteorological forcing is exacerbated. This work aims to characterize the salinity structure under extreme freshwater and wind events in the Ria de Aveiro coastal lagoon (Portugal). The Delft3D model was implemented and validated in 3D mode and used to perform simulations forced with extreme freshwater and wind scenarios. Results show that forcing conditions determine salinity stratification intensity and location. Generally, stratification increases as the freshwater increases, while the salinity intrusion moves downstream. Extreme wind tends to destroy stratification but fails to promote full-depth mixing, which is also dependent on the wind direction, as shown for the Espinheiro channel. The salinity intrusion is also impacted by wind events, being NW storms responsible for an upstream salt transport along the Mira channel and a downstream transport along the Espinheiro channel, and SW storms for an upstream displacement of the salinity intrusion along the São Jacinto channel. Finally, it is observed that the advection of a freshwater plume from the Vouga River into the middle of the São Jacinto channel under high freshwater scenarios causes an unusual local salinity pattern. This plume can either be pushed upstream or prevented from entering the channel, depending on the wind direction.
Funder
Centre for Environmental and Marine Studies
Foundation for Science and Technology
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献