Consequence Analysis of Accidental LNG Release on the Collided Structure of 500 cbm LNG Bunkering Ship

Author:

Nubli HarisORCID,Sohn Jung-Min,Jung Dongho

Abstract

The growing demand for liquefied natural gas (LNG)-fueled ships necessitates the establishment of an LNG bunkering facility. Ship-to-ship (STS) is one of the most practical forms of LNG bunkering systems. Although there are benefits to the LNG bunkering of ships, risk and safety issues are a concern due to the volatile cargo. Ship collision could result in accidental LNG release. The purpose of this study was to build LNG leakage scenarios, establish critical zones based on gas concentrations, and estimate the temperature reduction in a bunkering ship’s structure resulting from the use of cryogenic fluid. The condition of a target ship’s structure, both intact and when damaged due to collision, was considered. Leak size, leak direction, leak position, release rate, and reservoir pressure were included as leak parameters, and environmental parameters, such as the wind direction, wind speed, and ambient temperature, were also included. The release duration was set based on the shutdown duration of the emergency shutdown valve (ESD). A total of 72 leakage scenarios were generated for the main CFD analysis. Convergence tests were conducted to determine the appropriate grid and iteration numbers for a computational fluid dynamics (CFD) simulation. The gas dispersion characteristics and the cryogenic flow impact on the LNG bunkering ship’s structure are discussed through a parametric study.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference63 articles.

1. Resolution MEPC.203(62)—Amendments to the Annex of the Protocol of 1997 to Amend the International Convention for the Prevention of Pollution from Ships, 1973, as Modified by the Protocol of 1978 Relating Thereto (Inclusion of Regulations on Energy Effi)https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Technical%20and%20Operational%20Measures/Resolution%20MEPC.203%2862%29.pdf

2. Alternative Fuels Insighthttps://www.dnv.com/services/alternative-fuels-insight-128171

3. A Review of Demand Prospects for LNG as a Marine Transport Fuel;Le Fevre,2018

4. A Study on the Estimation of Facilities in LNG Bunkering Terminal by Simulation—Busan Port Case

5. Overview of performing shore-to-ship and ship-to-ship compatibility studies for LNG bunker vessels

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3