A Study on the Estimation of Facilities in LNG Bunkering Terminal by Simulation—Busan Port Case

Author:

Park ,Park

Abstract

Since 2020, the International Maritime Organization (IMO) has tightened regulations on the emissions of sulfur oxides from ships from less than 3.5% to less than 0.5%. As a countermeasure, shipping companies can adopt one of three potential solutions: using low sulfur fuel (LSFO), installing scrubbers, or using liquefied natural gas (LNG) fuel. However, considering the environmental aspects such as the UN greenhouse gas (GHG) emission reduction program and the reduction of fine dust generation in port areas, LNG fuel is ultimately considered to be the most ideal method in the marine industry. In line with this international trend, major port authorities are considering building LNG bunkering stations, but the proper methods and criteria for estimating the size of LNG bunkering infrastructure are not clear. This study proposes a method of estimating the size of LNG infrastructure required with consideration for the operational status of ports according to the estimated amount of bunkering demand at a future time with the case study of Busan Port in Korea. In order to estimate the detailed demand amount by inbound vessels, a simulation modeling technique is applied as a tool of research.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference36 articles.

1. IAPHhttp://www.lngbunkering.org/lng/ports/lng-bunker-infrastructure

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3