A Variational Bayesian-Based Simultaneous Localization and Mapping Method for Autonomous Underwater Vehicle Navigation

Author:

Mu Pengcheng,Zhang Xin,Qin Ping,He Bo

Abstract

Simultaneous Localization and Mapping (SLAM) is a well-known solution for mapping and realizing autonomous navigation of an Autonomous Underwater Vehicle (AUV) in unknown underwater environments. However, the inaccurate time-varying observation noise will cause filtering divergence and reduce the accuracy of localization and feature estimation. In this paper, VB-AUFastSLAM based on the unscented-FastSLAM (UFastSLAM) and the Variational Bayesian (VB) is proposed. The UFastSLAM combines unscented particle filter (UPF) and unscented Kalman filter (UKF) to estimate the AUV poses and features. In addition, to resist the unknown time-varying observation noise, the method of Variational Bayesian learning is introduced into the SLAM framework. Firstly, the VB method is used to estimate the joint posterior probability of the AUV path and observation noise. The Inverse-Gamma distribution is used to model the observation noise and real-time noise parameters estimation is performed to improve the AUV localization accuracy. Secondly, VB is reused to estimate the noise parameters in the feature update stage to enhance the performance of the feature estimation. The proposed algorithms are first validated in an open-source simulation environment. Then, an AUV SLAM system based on the Inertial Navigation System (INS), Doppler Velocity Log (DVL), and single-beam Sonar are also built to verify the effectiveness of the proposed algorithms in the marine environment. The accuracy of the proposed methods can reach 0.742% and 0.776% of the range, respectively, which is much better than 1.825% and 1.397% of the traditional methods.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3