VB-T PHD-SLAM: Efficient SLAM under heavy-tailed noise

Author:

Zou Han1,Wu Sunyong1,Wang Bin1,Xue Qiutiao1,Sun Xiyan1

Affiliation:

1. Guilin University of Electronic Technology

Abstract

Abstract To address the challenge of simultaneous localization and mapping (SLAM) in the presence of heavy-tailed noise, this papper introduces a robust probability hypothesis density (PHD) SLAM algorithm. This algorithm models measurement noise using the Student's t-distribution, which better captures the heavy-tailed nature of the noise. Since the prior density is assumed to be Gaussian mixture form, the posterior density is no longer Gaussian mixture form after the likelihood update of the t-distribution. A variational Bayesian approach is employed to ensure computable multi-target densities during filtering, minimizing the Kullback-Leibler divergence to obtain an approximate solution for the new marginal likelihood function. Then a new closed-form recursion of PHD-SLAM is derived by using t-distribution. Simulation results and real-world validations demonstrate that the proposed algorithm outperforms PHD-SLAM 1.0 and PHD-SLAM 2.0 in terms of both localization and mapping accuracy while maintaining computational efficiency in SLAM scenarios affected by heavy-tailed noise.

Publisher

Research Square Platform LLC

Reference34 articles.

1. Approximate inference in state-space models with heavy-tailed noise;Agamennoni G;IEEE Transactions on Signal Processing,2012

2. Burgard, W., Fox, D., & Thrun, S. (2005). Probabilistic robotics. The MIT Press.

3. Simultaneous localization and mapping (SLAM): Part II;Bailey T;IEEE robotics & automation magazine,2006

4. Variational inference: A review for statisticians;Blei DM;Journal of the American statistical Association,2017

5. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age;Cadena C;IEEE Transactions on robotics,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3