Detection Method of Marine Biological Objects Based on Image Enhancement and Improved YOLOv5S

Author:

Li PengORCID,Fan Yibing,Cai Zhengyang,Lyu Zhiyu,Ren WeijieORCID

Abstract

Marine biological object detection is of great significance for the exploration and protection of underwater resources. There have been some achievements in visual inspection for specific objects based on machine learning. However, owing to the complex imaging environment, some problems, such as low accuracy and poor real-time performance, have appeared in these object detection methods. To solve these problems, this paper proposes a detection method of marine biological objects based on image enhancement and YOLOv5S. Contrast-limited adaptive histogram equalization is taken to solve the problems of underwater image distortion and blur, and we put forward an improved YOLOv5S to improve accuracy and real-time performance of object detection. Compared with YOLOv5S, coordinate attention and adaptive spatial feature fusion are added in the improved YOLOv5S, which can accurately locate the target of interest and fully fuse the features of different scales. In addition, soft non-maximum suppression is adopted to replace non-maximum suppression for the improvement of the detection ability for overlapping objects. The experimental results show that the contrast-limited adaptive histogram equalization algorithm can effectively improve the underwater image quality and the detection accuracy. Compared with the original model (YOLOv5S), the proposed algorithm has a higher detection accuracy. The detection accuracy AP50 reaches 94.9% and the detection speed is 82 frames per second; therefore, the real-time performance can be said to reach a high level.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3