YOLOv7t-CEBC Network for Underwater Litter Detection

Author:

Zhang Xinyu1,Zhu Daqi1ORCID,Gan Wenyang2

Affiliation:

1. Research Institute Laboratory of Underwater Vehicles and Intelligent Systems, University of Shanghai for Science and Technology, Jungong Road 516, Shanghai 200093, China

2. Shanghai Engineering Research Center of Intelligent Maritime Search & Rescue and Underwater Vehicles, Shanghai Maritime University, Haigang Avenue 1550, Shanghai 201306, China

Abstract

The issue of marine litter has been an important concern for marine environmental protection for a long time, especially underwater litter. It is not only challenging to clean up, but its prolonged presence underwater can cause damage to marine ecosystems and biodiversity. This has led to underwater robots equipped with powerful visual detection algorithms becoming the mainstream alternative to human labor for cleaning up underwater litter. This study proposes an enhanced underwater litter detection algorithm, YOLOv7t-CEBC, based on YOLOv7-tiny, to assist underwater robots in target identification. The research introduces some modules tailored for marine litter detection within the model framework, addressing inter-class similarity and intra-class variability inherent in underwater waste while balancing detection precision and speed. Experimental results demonstrate that, on the Deep Plastic public dataset, YOLOv7t-CEBC achieves a detection accuracy (mAP) of 81.8%, markedly surpassing common object detection algorithms. Moreover, the detection frame rate reaches 118 FPS, meeting the operational requirements of underwater robots. The findings affirm that the enhanced YOLOv7t-CEBC network serves as a reliable tool for underwater debris detection, contributing to the maintenance of marine health.

Funder

National Natural Science Foundation of China

Creative Activity Plan for Science and Technology Commission of Shanghai

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3