Prediction of Driver’s Attention Points Based on Attention Model

Author:

Zhao ShuanfengORCID,Han Guodong,Zhao Qingqing,Wei Pei

Abstract

The current intelligent driving system does not consider the selective attention mechanism of drivers, and it cannot completely replace the drivers to extract effective road information. A Driver Visual Attention Network (DVAN), which is based on deep learning attention model, is proposed in our paper, in order to solve this problem. The DVAN is aimed at extracting the key information affecting the driver’s operation by predicting the driver’s attention points. It completes the fast localization and extraction of road information that is most interesting to drivers by merging local apparent features and contextual visual information. Meanwhile, a Cross Convolutional Neural Network (C-CNN) is proposed in order to ensure the integrity of the extracted information. Here, we verify the network on the KITTI dataset, which is the largest computer vision algorithm evaluation data set in the world’s largest autonomous driving scenario. Our results show that the DVAN can quickly locate and identify the target that the driver is most interested in a picture, and the average accuracy of prediction is 96.3%. This will provide useful theoretical basis and technical methods that are related to visual perception for intelligent driving vehicles, driving training and assisted driving systems in the future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Critical reasons for crashes investigated in the national motor vehicle crash causation survey;Singh,2015

2. Extraction method of driver’s mental component based on empirical mode decomposition and approximate entropy statistic characteristic in vehicle running state;Shuanfeng;J. Adv. Transp.,2017

3. The Implementation of Driver Model Based on the Attention Transfer Process

4. A Traffic Flow Prediction Method Based on Road Crossing Vector Coding and a Bidirectional Recursive Neural Network

5. Object detection with deep learning: A review;Zhouqiu;IEEE Trans. Neural Netw. Learn. Syst.,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3