A Traffic Flow Prediction Method Based on Road Crossing Vector Coding and a Bidirectional Recursive Neural Network

Author:

Zhao ,Zhao ,Bai ,Li

Abstract

Aiming at the problems that current predicting models are incapable of extracting the inner rule of the traffic flow sequence in traffic big data, and unable to make full use of the spatio-temporal relationship of the traffic flow to improve the accuracy of prediction, a Bi-directional Regression Neural Network (BRNN) is proposed in this paper, which can fully apply the context information of road intersections both in the past and the future to predict the traffic volume, and further to make up the deficiency that the current models can only predict the next-moment output according to the time series information in the previous moment. Meanwhile, a vectorized code to screen out the intersections related to the predicting point in the road network and to train and predict through inputting the track data of the selected intersections into BRNN, is designed. In addition, the model is testified through the true traffic data in partial area of Shen Zhen. The results indicate that, compared with current traffic predicting models, the model in this paper is capable of providing the necessary evidence for traffic guidance and control due to its excellent performance in extracting the spatio-temporal feature of the traffic flow series, which can enhance the accuracy by 16.298% on average.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference30 articles.

1. A Centralized Route-Management Solution for Autonomous Vehicles in Urban Areas

2. Risk-Based Decision Methods for Vehicular Networks

3. An Overview of Cooperative Driving in the European Union: Policies and Practices

4. An Interactive Visual Analytics Platform for Smart Intelligent Transportation Systems Management

5. Extraction Method of Driver’s Mental Component Based on Empirical Mode Decomposition and Approximate Entropy Statistic Characteristic in Vehicle Running State;Shuanfeng;J. Adv. Transp.,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3