Mitigating Wireless Channel Impairments in Seismic Data Transmission Using Deep Neural Networks

Author:

Iqbal NaveedORCID,Lawal Abdulmajid,Zerguine Azzedine

Abstract

The traditional cable-based geophone network is an inefficient way of seismic data transmission owing to the related cost and weight. The future of oil and gas exploration technology demands large-scale seismic acquisition, versatility, flexibility, scalability, and automation. On the one hand, a typical seismic survey can pile up a massive amount of raw seismic data per day. On the other hand, the need for wireless seismic data transmission remains immense. Moving from pre-wired to wireless geophones faces major challenges given the enormous amount of data that needs to be transmitted from geophones to the on-site data collection center. The most important factor that has been ignored in the previous studies for the realization of wireless seismic data transmission is wireless channel effects. While transmitting the seismic data wirelessly, impairments like interference, multi-path fading, and channel noise need to be considered. Therefore, in this work, a novel amalgamation of blind channel identification and deep neural networks is proposed. As a geophone already is responsible for transmitting a tremendous amount of data under tight timing constraints, the proposed setup eschews sending any additional training signals for the purpose of mitigating the channel effects. Note that the deep neural network is trained only on synthetic seismic data without the need to use real data in the training process. Experiments show that the proposed method gives promising results when applied to the real/field data set.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3