Signal Recovery from Randomly Quantized Data Using Neural Network Approach

Author:

Al-Shaikhi AliORCID

Abstract

We present an efficient scheme based on a long short-term memory (LSTM) autoencoder for accurate seismic deconvolution in a multichannel setup. The technique is beneficial for compressing massive amounts of seismic data. The proposed robust estimation ensures the recovery of sparse reflectivity from acquired seismic data that have been under-quantized. By adjusting the quantization error, the technique considerably improves the robustness of data to the quantization error, thereby boosting the visual saliency of seismic data compared to the other existing algorithms. This framework has been validated using both field and synthetic seismic data sets, and the assessment is carried out by comparing it to the steepest decent and basis pursuit methods. The findings indicate that the proposed scheme outperforms the other algorithms significantly in the following ways: first, in the proposed estimation, fraudulently or overbearingly estimated impulses are significantly suppressed, and second, the proposed guesstimate is much more robust to the quantization interval changes. The tests on real and synthetic data sets reveal that the proposed LSTM autoencoder-based method yields the best results in terms of both quality and computational complexity when compared with existing methods. Finally, the relative reconstruction error (RRE), signal-to-reconstruction error ratio (SRER), and power spectral density (PSD) are used to evaluate the performance of the proposed algorithm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference20 articles.

1. Blind image deconvolution;Kundur;Signal Process. Mag.,1996

2. Wavelet estimation revisited;Ulrych;Lead. Edge,1995

3. A least-squares approach to blind channel identification;Xu;IEEE Trans. Signal Process.,1995

4. Multichannel blind deconvolution of seismic signals;Kaaresen;Geophysics,1998

5. Multichannel deconvolution of seismic signals using statistical MCMC methods;Ram;IEEE Trans. Signal Process.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3