Moderate Averaged Deviations for a Multi-Scale System with Jumps and Memory

Author:

de Oliveira Gomes André1ORCID,Catuogno Pedro12ORCID

Affiliation:

1. Mathematics Department, Universidade Estadual de Campinas, Campinas 13081-970, SP, Brazil

2. ParisTech Applied Mathematics Department, ENSTA, 828 Boulevard des Maréchaux, 91120 Palaiseau, France

Abstract

This work studies a two-time-scale functional system given by two jump diffusions under the scale separation by a small parameter ε→0. The coefficients of the equations that govern the dynamics of the system depend on the segment process of the slow variable (responsible for capturing delay effects on the slow component) and on the state of the fast variable. We derive a moderate deviation principle for the slow component of the system in the small noise limit using the weak convergence approach. The rate function is written in terms of the averaged dynamics associated with the multi-scale system. The core of the proof of the moderate deviation principle is the establishment of an averaging principle for the auxiliary controlled processes associated with the slow variable in the framework of the weak convergence approach. The controlled version of the averaging principle for the jump multi-scale diffusion relies on a discretization method inspired by the classical Khasminkii’s averaging principle.

Funder

University of Campinas

Publisher

MDPI AG

Subject

General Medicine

Reference64 articles.

1. Mao, X. (2008). Stochastic Differential Equations and Applications, UK Horwood Publishing Limited. [2nd ed.].

2. Stochastic systems with memory and jumps;Cordoni;J. Diff. Eq.,2019

3. Analysis of multiscale methods of stochastic differential equations;Weinan;Comm. Pure Appl. Math.,2005

4. Pavliotis, G., and Stuart, A. (2008). Multiscale Methods: Averaging and Homogenization, Springer. Texts in Applied Mathematics.

5. Fouque, J.-P., Papanicolaou, G., and Sircar, K.R. (2000). Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3