Large deviations for Lévy diffusions in the small noise regime

Author:

De Oliveira Gomes André12ORCID,Catuogno Pedro José2ORCID

Affiliation:

1. Applied Mathematics Department, ENSTA-ParisTech, 828 Boulevard des Maréchaux, 91120 Palaiseau, France

2. Departamento de Matemática, Universidade Estadual de Campinas, 13081-970 Campinas, SP, Brazil

Abstract

This paper concerns the large deviations regime and the consequent solution of the Kramers problem for a two-time scale stochastic system driven by a common jump noise signal perturbed in small intensity [Formula: see text] and with accelerated jumps by intensity [Formula: see text]. We establish Freidlin–Wentzell estimates for the slow process of the multiscale system in the small noise limit [Formula: see text] using the weak convergence approach to large deviations theory. The core of our proof is the reduction of the large deviations principle to the establishment of a stochastic averaging principle for auxiliary controlled processes. As consequence we solve the first exit time/exit locus problem from a bounded domain containing the stable state of the averaged dynamics for the family of the slow processes in the small noise limit.

Funder

FAPESP

Fundacao de Amparo Pesquisa do Estado de Sao Paulo

Publisher

World Scientific Pub Co Pte Ltd

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3