Virtual Surgical Planning and Patient-Specific Instruments for Correcting Lower Limb Deformities in Pediatric Patients: Preliminary Results from the In-Office 3D Printing Point of Care

Author:

Trisolino Giovanni1ORCID,Depaoli Alessandro1,Menozzi Grazia Chiara1ORCID,Lerma Luca1,Di Gennaro Michele1,Quinto Carmelo2,Vivarelli Leonardo2ORCID,Dallari Dante2ORCID,Rocca Gino1ORCID

Affiliation:

1. Unit of Pediatric Orthopedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy

2. Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy

Abstract

(1) Background: Virtual reality and 3D printing are transforming orthopedic surgery by enabling personalized three-dimensional (3D) models for surgical planning and Patient-Specific Instruments (PSIs). Hospitals are establishing in-house 3D printing centers to reduce costs and improve patient care. Pediatric orthopedic surgery also benefits from these technologies, enhancing the precision and personalization of treatments. This study presents preliminary results of an In-Office 3D Printing Point of Care (PoC), outlining considerations and challenges in using this program for treating lower limb deformities in pediatric patients through Virtual Surgical Planning (VSP) and 3D-printed Patient-Specific Instruments (PSIs). (2) Materials and Methods: Pediatric patients with congenital or acquired lower limb deformities undergoing surgical correction based on VSP, incorporating 3D-printed PSIs when required, were included in this study. The entire process of VSP and 3D printing at the In-Office PoC was illustrated. Data about deformity characteristics, surgical procedures, and outcomes, including the accuracy of angular correction, surgical times, and complications, were reported. (3) Results: In total, 39 bone correction procedures in 29 patients with a mean age of 11.6 ± 4.7 years (range 3.1–18.5 years) were performed according to VSP. Among them, 23 procedures were accomplished with PSIs. Surgeries with PSIs were 45 min shorter, with fewer fluoroscopy shots. Optimal correction was achieved in 37% of procedures, while the remaining cases showed under-corrections (41%) or over-corrections (22%). Major complications were observed in four patients (13.8%). (4) Conclusions: The In-Office 3D Printing Point of Care is becoming an essential tool for planning and executing complex corrections of lower limb deformities, but additional research is needed for optimizing the prediction and accuracy of the achieved corrections.

Funder

Italian Ministry of Health

Italian Musculoskeletal Apparatus Network RAMS and “Donazione ASD Cernobbio 2010”

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3