A Practical Satellite-Derived Vegetation Drought Index for Arid and Semi-Arid Grassland Drought Monitoring

Author:

Chang Sheng,Chen Hong,Wu BingfangORCID,Nasanbat ElbegjargalORCID,Yan Nana,Davdai Bulgan

Abstract

In semi-arid pasture areas, drought may directly influence livestock production, cause economic losses, and accelerate the processes of desertification along with destructive human activities (i.e., overgrazing). The aim of this article is to analyze the disadvantages of several drought indices derived from remote sensing data and develop a new vegetation drought index (VDI) for monitoring of grassland drought with high temporal frequency (dekad) and fine spatial resolution (1 km). The site-based soil moisture data from the field campaign in 2014 and the fenced biomass values at nine sites from 2000 to 2015 were adopted for validation. The results indicate that the proposed VDI would better reflect the extent, severity, and changes of drought compared with single drought indices or the vegetation health index (VHI); specifically, the VDI is more closely related to site-based soil moisture, with R human increasing to approximately 0.07 compared with the VHI; and with normalized fenced biomass (NFB) values, with average R human increasing to approximately 0.11 compared with the VHI. However, the correlations between VHI and VDI with NFB values are relatively lower in desert steppe regions. Furthermore, regional drought-affected data (RDA) are used to ensure spatial consistency of the evaluation; the VDI map is in good agreement with the RDA map based on field measurements. The presented VDI shows reliable and stable drought monitoring ability, which will play an important role in the future drought monitoring of inland grassland.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. Sensitivity analysis of drought indices used in Shaanxi Province;Li;J. Desert Res.,2009

2. The Meteorological Disaster Risk Assessment Based on the Diffusion Mechanism

3. Drought under global warming: a review

4. Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming

5. https://www.huanbao-world.com/zrzy/lyky/161100.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3