Pasture Quality Assessment through NDVI Obtained by Remote Sensing: A Validation Study in the Mediterranean Silvo-Pastoral Ecosystem

Author:

Serrano João1ORCID,Shahidian Shakib1,Paixão Luís2,Marques da Silva José12ORCID,Paniágua Luís Lorenzo3ORCID

Affiliation:

1. MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, University of Évora, Mitra, Ap. 94, 7006-554 Évora, Portugal

2. AgroInsider Lda., 7005-841 Évora, Portugal

3. Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avenida Adolfo Suárez, S/N, 06007 Badajoz, Spain

Abstract

Monitoring the evolution of pasture availability and quality throughout the growing season is the basis of grazing management in extensive Mediterranean livestock systems. Remote sensing (RS) is an innovative tool that, among many other applications, is being developed for detailed spatial and temporal pasture quality assessment. The aim of the present study is to evaluate the potential of satellite images (Sentinel-2) to assess indicators of pasture quality (pasture moisture content, PMC, crude protein, CP and neutral detergent fiber, NDF) using the normalized difference vegetation index (NDVI). Field measurements were conducted over three years at eight representative fields of the biodiversity and variability of dryland pastures in Portugal. A total of 656 georeferenced pasture samples were collected and processed in the laboratory. The results show a significant correlation between pasture quality parameters (PMC, CP and NDF) obtained in standard laboratory methods and NDVI satellite-derived data (R2 of 0.72, 0.75, and 0.50, respectively). The promising findings obtained in this large-scale validation study (three years and eight fields) encourage further research (i) to test and develop other vegetation indexes for monitoring pasture nutritive value; (ii) to extend this research to pastures of the other Mediterranean countries, building large and representative datasets and developing more robust and accurate monitoring models based on freely available Sentinel-2 images; (iii) to implement an extension program for agricultural managers to popularize the use of these technological tools as the basis of grazing and pasture management.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3