Advances in Optical Based Turbidity Sensing Using LED Photometry (PEDD)

Author:

Fay Cormac D.ORCID,Nattestad AndrewORCID

Abstract

Turbidity is one of the primary metrics to determine water quality in terms of health and environmental concerns, however analysis typically takes place in centralized facilities, with samples periodically collected and transported there. Large scale autonomous deployments (WSNs) are impeded by both initial and per measurement costs. In this study we employ a Paired Emitter-Detector Diode (PEDD) technique to quantitatively measure turbidity using analytical grade calibration standards. Our PEDD approach compares favorably against more conventional photodiode-LED arrangements in terms of spectral sensitivity, cost, power use, sensitivity, limit of detection, and physical arrangement as per the ISO 7027 turbidity sensing standard. The findings show that the PEDD technique was superior in all aforementioned aspects. It is therefore more ideal for low-cost, low-power, IoT deployed sensors. The significance of these findings can lead to environmental deployments that greatly lower the device and per-measurement costs.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3