Combination of Machine Learning and RGB Sensors to Quantify and Classify Water Turbidity

Author:

Parra Lorena1ORCID,Ahmad Ali1ORCID,Sendra Sandra1ORCID,Lloret Jaime1ORCID,Lorenz Pascal2ORCID

Affiliation:

1. Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, Gandía C/Paranimf, 1, 46730 Grao de Gandia, Spain

2. Network and Telecommunication Research Group, University of Haute Alsace, 34 rue du Grillenbreit, 68008 Colmar, France

Abstract

Turbidity is one of the crucial parameters of water quality. Even though many commercial devices, low-cost sensors, and remote sensing data can efficiently quantify turbidity, they are not valid tools for the classification it. In this paper, we design, calibrate, and test a novel optical low-cost sensor for turbidity quantification and classification. The sensor is based on an RGB light source and a light detector. The analyzed samples are characterized by turbidity values from 0.02 to 60 NTUs, and have four different sources. These samples were generated to represent natural turbidity sources and leaves in the marine areas close to agricultural lands. The data are gathered using 64 different combinations of light, generating complex matrix data. Machine learning models are compared to analyze this data, including training, validation, and test datasets. Moreover, different alternatives for data preprocessing and feature selection are assessed. Concerning the quantification of turbidity, the best results were obtained using averaged data and principal components analyses in conjunction with exponential gaussian process regression, achieving an R2 of 0.979. Regarding the classification of the turbidity, an accuracy of 91.23% is obtained with the fine K-Nearest-Neighbor classifier. The cases in which data were misclassified are characterized by turbidity values lower than 5 NTUs. The obtained results represent an improvement over the current solutions in terms of turbidity quantification and a completely novel approach to turbidity classification.

Funder

European Union NextGenerationEU

Generalitat Valenciana

Agencia Estatal de Investigación

Publisher

MDPI AG

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3