Integrating Qualitative Comparative Analysis and Support Vector Machine Methods to Reduce Passengers’ Resistance to Biometric E-Gates for Sustainable Airport Operations

Author:

Kim CheongORCID,Costello Francis JosephORCID,Lee Kun Chang

Abstract

For the sake of maintaining sustainable airport operations, biometric e-gates security systems started receiving significant attention from managers of airports around the world. Therefore, how to reduce flight passengers’ perceived resistance to the biometric e-gates security system became much more important than ever. In this sense, the purpose of this study is to analyze the factors which contribute to passenger’s resistance to adopt biometric e-gate technology within the airport security setting. Our focus lies on exploring the effects that perceived risks and benefits as well as user characteristics and propagation mechanisms had on causing such resistance. With survey data from 339 airport users, a support vector machine (SVM) model was implemented to provide a tool for classifying resistance causes correctly, and csQCA (crisp set Qualitative Comparative Analysis) was implemented in order to understand the complex underlying causes. The results showed that the presence of perceived risks and the absence of perceived benefits were the main contributing factors, with propagation mechanisms also showing a significant effect on weak and strong resistance. This study is distinct in that it has attempted to explore innovation adoption through the lens of resistance and in doing so has uncovered important complex causation conditions that need to be considered before service quality can be enhanced within airports. This study’s implications should therefore help steer airport managers in the right direction towards maintaining service quality while implementing sustainable new technologies within their current airport security ecosystem.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3