Abstract
When solving real-world problems with complex simulations, utilizing stochastic algorithms integrated with a simulation model appears inefficient. In this study, we compare several hybrid algorithms for optimizing an offshore jacket substructure (JSS). Moreover, we propose a novel hybrid algorithm called the divisional model genetic algorithm (DMGA) to improve efficiency. By adding different methods, namely particle swarm optimization (PSO), pattern search (PS) and targeted mutation (TM) in three subpopulations to become “divisions,” each division has unique functionalities. With the collaboration of these three divisions, this method is considerably more efficient in solving multiple benchmark problems compared with other hybrid algorithms. These results reveal the superiority of DMGA in solving structural optimization problems.
Funder
Ministry of Science and Technology, Taiwan
National Taiwan University
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献