Affiliation:
1. Engineering for Smart-Sustainable Systems Research Center, Mohammadia School of Engineers (EMI), Mohammed V University in Rabat, Rabat, Morocco
Abstract
The main goal of this paper is to explore the performance of a residential grid-tied hybrid (GTH) system which relies on economic and environmental aspects. A photovoltaic- (PV-) wind turbine- (WT-) battery storage system with maximizing self-consumption and time-of-use (ToU) pricing is conducted to examine the system efficiency. In so doing, technical optimization criteria with taking into consideration renewable energy benefits including feed-in-tariff (FIT) and greenhouse gas emission (GHG) reduction are analyzed. As the battery has a substantial effect on the operational cost of the system, the energy management strategy (EMS) will incorporate the daily operating cost of the battery and the effect of the degradation. The model can give the opportunity to the network to sell or purchase energy from the system. The simulation results demonstrate the effectiveness of the proposed approach in which the new objective function achieves the maximum cost-saving (99.81%) and income (5.16 $/day) compared to other existing strategies as well as the lowest GHG emission. Furthermore, the battery enhances the best daily self-consumption and load cover ratio. Then, as the model is nonlinear, a comparison with other existing algorithms is performed to select the feasible, robust, and reliable model for the residential application. A hybrid algorithm (HGAFMINCON) is developed to demonstrate the superiority of the algorithm over FMINCON and GA shown in terms of cost savings and income.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献