Integrating Life Cycle Principles in Home Energy Management Systems: Optimal Load PV–Battery–Electric Vehicle Scheduling

Author:

Al Muala Zaid A.1ORCID,Bany Issa Mohammad A.1ORCID,Bello Bugallo Pastora M.1ORCID

Affiliation:

1. TECH-NASE Research Group, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain

Abstract

Energy management in the residential sector contributes to energy system dispatching and security with the optimal use of renewable energy systems (RES) and energy storage systems (ESSs) and by utilizing the main grid based on its state. This work focuses on optimal energy flow, ESS parameters, and energy consumption scheduling based on demand response (DR) programs. The primary goals of the work consist of minimizing electricity costs while simultaneously extending the lifetime of ESSs in conjunction with extracting maximum benefits throughout their operational lifespan and reducing CO2 emissions. Effective ESS and photovoltaic (PV) energy usage prices are modeled and an efficient energy flow management algorithm is presented, which considers the life cycle of the ESSs including batteries, electrical vehicles (EVs) and the efficient use of the PV system while reducing the cost of energy consumption. In addition, an optimization technique is employed to obtain the optimal ESS parameters including the size and depth of discharge (DOD), considering the installation cost, levelized cost of storage (LCOS), winter and summer conditions, energy consumption profile, and energy prices. Finally, an optimization technique is applied to obtain the optimal energy consumption scheduling. The proposed system provides all of the possibilities of exchanging energy between EV, battery, PV system, grid, and home. The optimization problem is solved using the particle swarm optimization algorithm (PSO) in MATLAB with an interval time of one minute. The results show the effectiveness of the proposed system, presenting an actual cost reduction of 28.9% and 17.7% in summer and winter, respectively, compared to a base scenario. Similarly, the energy losses were reduced by 26.7% in winter and 22.3% in summer, and the EV battery lifetime was extended from 9.2 to 19.1 years in the winter scenario and from 10.4 to 17.7 years in the summer scenario. The integrated system provided a financial contribution during the operational lifetime of EUR 11,600 and 7900 in winter and summer scenarios, respectively. The CO2 was reduced by 59.7% and 46.2% in summer and winter scenarios, respectively.

Publisher

MDPI AG

Reference63 articles.

1. (2023, November 12). Our World in Data. Available online: https://ourworldindata.org/energy.

2. Updating energy security and environmental policy: Energy security theories revisited;Proskuryakova;J. Environ. Manag.,2018

3. Energy security and renewable energy efficiency in EU;Renew. Sustain. Energy Rev.,2018

4. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting;Notton;Renew. Sustain. Energy Rev.,2018

5. PV penetration limits in low voltage networks and voltage variations;Aziz;IEEE Access,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3