Abstract
The atmospheric drain condensate system of a marine steam power plant is described and evaluated from the energetic and exergetic point of view at a conventional liquefied natural gas (LNG) carrier. Energy loss and exergy destruction rate were calculated for individual stream flows joined in an atmospheric drain tank with variations of the main turbine propulsion speed rate. The energy efficiency of joining streams was noted to be above 98% at all observed points as the atmospheric drain tank was the direct heater. The exergy efficiency of the stream flows into the drain tank was in the range of 80% to 90%. The exergy stream flow to the tank was modeled and optimized by the gradient reduced gradient (GRG) method. Optimization variables comprised contaminated and clean condensate temperature of the atmospheric drain tank and distillate water inlet to the atmospheric drain tank with respect to condensate outlet temperature. The optimal temperatures improves the exergy efficiency of the tank as direct heater, to about 5% in port and 3% to 4% when the LNG carrier was at sea, which is the aim of optimizing. Proposals for improvement and recommendations are given for proper plant supervision, which may be implemented in real applications.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献