The Effect of Flue Gas Recirculation on CO, PM and NOx Emissions in Pellet Stove Combustion

Author:

Polonini Luigi FrancescoORCID,Petrocelli Domenico,Lezzi Adriano MariaORCID

Abstract

Pellet stoves are popular appliances because they are an affordable technology and because the fuel is easy to store and to use. The increasing concern for environmental issues, however, requires a continuous effort to reduce pollutant levels in the atmosphere. This experimental work focuses on flue gas recirculation (FGR) as a possible way to improve combustion and decrease the emissions of carbon monoxide CO, particulate matter PM, and nitrogen oxides NOx in order to fulfill European and Italian emission requirements, for NOx in particular. A pellet stove has been tested in several experimental sessions with and without FGR. Pollutant emissions have been measured and analyzed in terms of statistical summaries and instantaneous trends. With FGR, the average CO and PM emissions were found to be 80% and 45% lower than the corresponding emissions without FGR. Results for PM are significant since FGR reduces emissions well below the most restrictive limits enforced in Italy. The analysis of instantaneous emissions in relation to excess air indicated that FGR can considerably reduce emissions, especially at the extremities of the oxygen O2 content range. Optimal ranges of excess air, in terms of O2 in flue gas, were identified for both the tested configurations, in which CO and PM emissions are minimized. The optimal range is 8–9% without FGR, and it decreases to 5–7% with FGR. Finally, a reduction in NOx emissions by about 11% has been observed in the configuration with FGR. Although this reduction seems modest as compared to CO and PM, it is important in that it lowers the emission level to the most severe limit in Italian regulations and indicates an improved FGR system as the solution for further reduction.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3