Preliminary Significant Wave Height Retrieval from Interferometric Imaging Radar Altimeter Aboard the Chinese Tiangong-2 Space Laboratory

Author:

Ren LinORCID,Yang JingsongORCID,Dong Xiao,Jia Yongjun,Zhang YunhuaORCID

Abstract

The interferometric imaging radar altimeter (InIRA) aboard the Chinese Tiangong-2 space laboratory is the first spaceborne imaging radar working at low incidence angles. This study focuses on the retrieval of significant wave heights (SWHs) from InIRA data. The retrieved SWHs can be used for correcting the sea state bias of InIRA-derived sea surface heights and can supplement SWH products from other spaceborne sensors. First, we analyzed tilt, range bunching and velocity bunching wave modulations at low incidence angles, and we found clear dependencies between the SWH and two defined factors, range and azimuth integration, for ocean waves in the range and azimuth directions, respectively. These dependencies were further confirmed using InIRA measurements and collocated WaveWatch III (WW3) data. Then, an empirical orthogonal SWH model using the range and azimuth integration factors as model inputs was proposed. The model was segmented by the incidence angle, and the model coefficients were estimated by fitting the collocation at each incidence angle bin. Finally, the SWHs were retrieved from InIRA data using the proposed model. The retrievals were validated using both WW3 and altimeter (JASON2, JASON3, SARAL, and HY2A) SWHs. The validation with WW3 data shows a root mean square error (RMSE) of 0.43 m, while the average RMSE with all traditional altimeter data is 0.48 m. This indicates that the InIRA can be used to measure SWHs.

Funder

National Key Research and Development Program of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3