Preliminary Results of Marine Gravity Recovery by Tiangong-2 Interferometric Imaging Radar Altimeter

Author:

Sun Meng12ORCID,Zhang Yunhua12ORCID,Dong Xiao12,Shi Xiaojin12

Affiliation:

1. CAS Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

This paper presents for the first time the results of marine gravity recovery using the ocean observation data acquired by Tiangong-2 interferometric imaging radar altimeter (TG2 InIRA) which demonstrate not only the balanced accuracies of the north and east components of deflection of the vertical (DOV) as envisaged, but also the improved spatial resolutions of DOV compared with that by conventional altimeters (CAs). Moreover, much higher measurement efficiency owing to the wide-swath capability and the great potential in accuracy improvement of marine gravity field are also demonstrated. TG2 InIRA adopts the interferometry with short baseline and takes small incidence angles, by which wide-swath sea surface height (SSH) can be measured with high accuracy. Gravity recovery experiments in the Western Pacific area are conducted to demonstrate the performance, advantages and capability of TG2 InIRA. SSH data processing algorithms and DOV calculation have been designed by taking the wide-swath feature into account, based on which, the gravity anomalies are then calculated using the inverse Vening Meinesz formula. The derived gravity anomalies are compared with both the published gravity models and the shipborne gravity measurements. The results show that the accuracy of TG2 InIRA is equivalent to, or even a little better than, that of CAs. The fused gravity result using equal TG2 InIRA data and CAs data performs better than those using TG2 InIRA data alone or CAs data alone. Due to the signal bandwidth of TG2 InIRA is only 40 MHz which is much smaller than that of CAs, much higher accuracy can be hopefully achieved for future missions if larger signal bandwidth is used.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advance in Ocean Satellite Radar Altimetry Technology;Chinese Journal of Space Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3