Abstract
Land reclamation has been increasingly employed in many coastal cities to resolve issues associated with land scarcity and natural hazards. Especially, land subsidence is a non-negligible environmental geological problem in reclamation areas, which is essentially caused by soil consolidation. However, spatial-scale evaluation on the average degree of consolidation (ADC) of soil layers and the effects of soil consolidation on land subsidence have rarely been reported. This study aims to carry out the integrated analysis on soil consolidation and subsidence mechanism in Chongming East Shoal (CES) reclamation area, Shanghai, at spatial-, macro-, and micro-scale so that appropriate guides can be provided to resist the potential environmental hazards. The interferometric synthetic aperture radar (InSAR) technique was utilized to retrieve the settlement curves of the selected onshore (Ra) and offshore (Rb) areas. Then, the hyperbolic (HP) model and three-point modified exponential (TME) model were combined applied to predict the ultimate settlement and to determine the range of ADC rather than a single pattern. With two boreholes Ba and Bb set within Ra and Rb, conventional tests, MIP test, and SEM test were conducted on the collected undisturbed soil to clarify the geological features of exposed soil layers and the micro-scale pore and structure characteristics of representative compression layer. The preliminary results showed that the ADC in Rb (93.1–94.1%) was considerably higher than that in Ra (60.8–78.7%); the clay layer was distinguished as the representative compression layer; on micro-scale, the poor permeability conditions contributed to the low consolidation efficiency and slight subsidence in Rb, although there was more compression space. During urbanization, the offshore area may suffer from potential subsidence when it is subjected to an increasing ground load, which requires special attention.
Funder
Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Natural Resources
Subject
General Earth and Planetary Sciences
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献