Investigation of the microscopic properties of natural structured clay

Author:

Ning Di,Ma Qingshan,Ge Weiya,Shao Zefei,Lei Ting,Xing Huaixue

Abstract

Conducting quantitative research on the microstructure of soft clay can reveal the essence of its soil mechanical behavior, which is of important practical significance for geological disaster risk assessment and prevention. To quantitatively investigate the microscopic properties of natural structured clay, soft clay soils from various sedimentary environments in the Hangzhou Estuarine Bay area were chosen as the research subject in this study. Subsequently, a comprehensive investigation into the microstructure of clay was conducted, involving X-ray phase analysis and SEM imaging analysis. The results revealed the following: (1) In comparison to the deep clay deposited in fluvial-lacustrine environments, the shallow mucky clay in marine sediments had a higher clay mineral content, accounting for 48%. Illite makes up the majority of it, with minor levels of kaolinite and montmorillonite being present. (2) The shallow mucky clay in the Hangzhou Estuarine Bay area had a typical agglomerate-flocculated structure. In contrast, the deeper clay showed a flocculated structure with less uniform particle sizes, strong stacking randomness, poor directional alignment of soil pores, and tends to form arrangements where edges are adjacent to faces or edges are adjacent to other edges. (3) Compared to the deep clay deposited in fluvial-lacustrine environments, the marine-deposited shallow mucky clay displayed orderly pore arrangements, strong directional alignment, significant pore shape variability, and minimal pore size changes between adjacent pores. The microstructure of soil plays a crucial role in determining the physical, mechanical, and other engineering properties of the soil. This study provides insightful information about the relationship between clay microstructure and geotechnical characteristics in Hangzhou and the surrounding areas.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3