Landmark-Based Homing Navigation Using Omnidirectional Depth Information

Author:

Lee Changmin,Yu Seung-Eun,Kim DaeEunORCID

Abstract

A number of landmark-based navigation algorithms have been studied using feature extraction over the visual information. In this paper, we apply the distance information of the surrounding environment in a landmark navigation model. We mount a depth sensor on a mobile robot, in order to obtain omnidirectional distance information. The surrounding environment is represented as a circular form of landmark vectors, which forms a snapshot. The depth snapshots at the current position and the target position are compared to determine the homing direction, inspired by the snapshot model. Here, we suggest a holistic view of panoramic depth information for homing navigation where each sample point is taken as a landmark. The results are shown in a vector map of homing vectors. The performance of the suggested method is evaluated based on the angular errors and the homing success rate. Omnidirectional depth information about the surrounding environment can be a promising source of landmark homing navigation. We demonstrate the results that a holistic approach with omnidirectional depth information shows effective homing navigation.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Mobile Robot Visual Homing Strategy Based on Pseudo-Isometric Distribution of Landmarks;2022 5th International Conference on Intelligent Autonomous Systems (ICoIAS);2022-09-23

2. Adaptive Correction of Landmark for Visual Homing in Mobile Vehicles;IEEE Transactions on Intelligent Vehicles;2022

3. Active Mapping and Robot Exploration: A Survey;Sensors;2021-04-02

4. Optimal Landmark Selection for Bearing-Only Navigation;Proceedings of the Advances in Robotics 2019;2019-07-02

5. Bio-inspired orientation using the polarization pattern in the sky based on artificial neural networks;Optics Express;2019-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3