Multi-Label Classification in Anime Illustrations Based on Hierarchical Attribute Relationships

Author:

Lan Ziwen1,Maeda Keisuke2ORCID,Ogawa Takahiro2ORCID,Haseyama Miki2

Affiliation:

1. Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan

2. Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan

Abstract

In this paper, we propose a hierarchical multi-modal multi-label attribute classification model for anime illustrations using a graph convolutional network (GCN). Our focus is on the challenging task of multi-label attribute classification, which requires capturing subtle features intentionally highlighted by creators of anime illustrations. To address the hierarchical nature of these attributes, we leverage hierarchical clustering and hierarchical label assignments to organize the attribute information into a hierarchical feature. The proposed GCN-based model effectively utilizes this hierarchical feature to achieve high accuracy in multi-label attribute classification. The contributions of the proposed method are as follows. Firstly, we introduce GCN to the multi-label attribute classification task of anime illustrations, enabling the capturing of more comprehensive relationships between attributes from their co-occurrence. Secondly, we capture subordinate relationships among the attributes by adopting hierarchical clustering and hierarchical label assignment. Lastly, we construct a hierarchical structure of attributes that appear more frequently in anime illustrations based on certain rules derived from previous studies, which helps to reflect the relationships between different attributes. The experimental results on multiple datasets show that the proposed method is effective and extensible by comparing it with some existing methods, including the state-of-the-art method.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3