A Transformer-Based Model for Super-Resolution of Anime Image

Author:

Xu ShizhuoORCID,Dutta VibekanandaORCID,He XinORCID,Matsumaru TakafumiORCID

Abstract

Image super-resolution (ISR) technology aims to enhance resolution and improve image quality. It is widely applied to various real-world applications related to image processing, especially in medical images, while relatively little appliedto anime image production. Furthermore, contemporary ISR tools are often based on convolutional neural networks (CNNs), while few methods attempt to use transformers that perform well in other advanced vision tasks. We propose a so-called anime image super-resolution (AISR) method based on the Swin Transformer in this work. The work was carried out in several stages. First, a shallow feature extraction approach was employed to facilitate the features map of the input image’s low-frequency information, which mainly approximates the distribution of detailed information in a spatial structure (shallow feature). Next, we applied deep feature extraction to extract the image semantic information (deep feature). Finally, the image reconstruction method combines shallow and deep features to upsample the feature size and performs sub-pixel convolution to obtain many feature map channels. The novelty of the proposal is the enhancement of the low-frequency information using a Gaussian filter and the introduction of different window sizes to replace the patch merging operations in the Swin Transformer. A high-quality anime dataset was constructed to curb the effects of the model robustness on the online regime. We trained our model on this dataset and tested the model quality. We implement anime image super-resolution tasks at different magnifications (2×, 4×, 8×). The results were compared numerically and graphically with those delivered by conventional convolutional neural network-based and transformer-based methods. We demonstrate the experiments numerically using standard peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), respectively. The series of experiments and ablation study showcase that our proposal outperforms others.

Funder

JSPS KAKENHI

Waseda University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference46 articles.

1. Japan Pop! Inside the World of Japanese Popular Culture. Edited by Timothy J. Craig. Armonk, N.Y.: M.E. Sharpe Inc., 2000. ix, 360 pp. $64.95;Kelsky;J. Asian Stud.,2001

2. Napier, S.J. Anime from Akira to Howl’s Moving Castle: Experiencing Contemporary Japanese Animation, 2016.

3. Miss Dai. 2022.

4. Cubic convolution interpolation for digital image processing;Keys;IEEE Trans. Acoust. Speech Signal Process.,1981

5. Improving resolution by image registration;Irani;CVGIP Graph. Model. Image Process.,1991

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3