Automated Micro-Crack Detection within Photovoltaic Manufacturing Facility via Ground Modelling for a Regularized Convolutional Network

Author:

Animashaun Damilola1,Hussain Muhammad1ORCID

Affiliation:

1. Department of Computer Science, Centre for Industrial Analytics, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

Abstract

The manufacturing of photovoltaic cells is a complex and intensive process involving the exposure of the cell surface to high temperature differentials and external pressure, which can lead to the development of surface defects, such as micro-cracks. Currently, domain experts manually inspect the cell surface to detect micro-cracks, a process that is subject to human bias, high error rates, fatigue, and labor costs. To overcome the need for domain experts, this research proposes modelling cell surfaces via representative augmentations grounded in production floor conditions. The modelled dataset is then used as input for a custom ‘lightweight’ convolutional neural network architecture for training a robust, noninvasive classifier, essentially presenting an automated micro-crack detector. In addition to data modelling, the proposed architecture is further regularized using several regularization strategies to enhance performance, achieving an overall F1-score of 85%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3