PV-CrackNet Architecture for Filter Induced Augmentation and Micro-Cracks Detection within a Photovoltaic Manufacturing Facility

Author:

Hussain Muhammad,Al-Aqrabi HussainORCID,Hill RichardORCID

Abstract

Photovoltaic cell manufacturing is a rigorous process involving many stages where the cell surface is exposed to external pressure and temperature differentials. This provides fertile ground for micro-cracks to develop on the cell surface. At present, domain experts carry out a manual inspection of the cell surface to judge if any micro-cracks are present. This research looks to overcome the issue of cell data scarcity through the proposed filter-induced augmentations, thus providing developers with an effective, cost-free mechanism for generating representative data samples. Due to the abstract nature of the cell surfaces, the proposed augmentation strategy is effective in generating representative samples for better generalization. Furthermore, a custom architecture is developed that is computationally lightweight compared to state-of-the-art architectures, containing only 7.01 million learnable parameters while achieving an F1-score of 97%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3