Rainfall-Induced Shallow Landslide Detachment, Transit and Runout Susceptibility Mapping by Integrating Machine Learning Techniques and GIS-Based Approaches

Author:

Di Napoli MarianoORCID,Di Martire DiegoORCID,Bausilio Giuseppe,Calcaterra DomenicoORCID,Confuorto PierluigiORCID,Firpo Marco,Pepe GiacomoORCID,Cevasco AndreaORCID

Abstract

Rainfall-induced shallow landslides represent a serious threat in hilly and mountain areas around the world. The mountainous landscape of the Cinque Terre (eastern Liguria, Italy) is increasingly popular for both Italian and foreign tourists, most of which visit this outstanding terraced coastal landscape to enjoy a beach holiday and to practice hiking. However, this area is characterized by a high level of landslide hazard due to intense rainfalls that periodically affect its rugged and steep territory. One of the most severe events occurred on 25 October 2011, causing several fatalities and damage for millions of euros. To adequately address the issues related to shallow landslide risk, it is essential to develop landslide susceptibility models as reliable as possible. Regrettably, most of the current land-use and urban planning approaches only consider the susceptibility to landslide detachment, neglecting transit and runout processes. In this study, the adoption of a combined approach allowed to estimate shallow landslide susceptibility to both detachment and potential runout. At first, landslide triggering susceptibility was assessed using Machine Learning techniques and applying the Ensemble approach. Nine predisposing factors were chosen, while a database of about 300 rainfall-induced shallow landslides was used as input. Then, a Geographical Information System (GIS)-based procedure was applied to estimate the potential landslide runout using the “reach angle” method. Information from such analyses was combined to obtain a susceptibility map describing detachment, transit, and runout. The obtained susceptibility map will be helpful for land planning, as well as for decision makers and stakeholders, to predict areas where rainfall-induced shallow landslides are likely to occur in the future and to identify areas where hazard mitigation measures are needed.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3