Study on Landslide Susceptibility Based on Multi-Model Coupling: A Case Study of Sichuan Province, China

Author:

Zhang Jinming1,Qian Jianxi1,Lu Yuefeng123ORCID,Li Xueyuan1,Song Zhenqi1

Affiliation:

1. School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255049, China

2. National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China

3. State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Landslides are among the most prevalent geological hazards and are characterized by their high frequency, significant destructive potential, and considerable incident rate. Annually, these events lead to substantial casualties and property losses. Thus, conducting landslide susceptibility assessments in the regions vulnerable to such hazards has become crucial. In recent years, the coupling of traditional statistical methods with machine learning techniques has shown significant advantages in assessing landslide risk. This study focused on Sichuan Province, China, a region characterized by its vast area and diverse climatic and geological conditions. We selected 13 influencing factors for the analysis: elevation, slope, aspect, plan curve, profile curve, valley depth, precipitation, the stream power index (SPI), the topographic wetness index (TWI), the topographic position index (TPI), surface roughness, fractional vegetation cover (FVC), and slope height. This study incorporated the certainty factor method (CF), the information value method (IV), and their coupling with the decision tree C5.0 model (DT) and a logistic regression model (LR) as follows: IV-LR, IV-DT, CF-LR, and CF-DT. The results, validated by an ROC curve analysis, demonstrate that the evaluation accuracy of all six models exceeded 0.750 (AUC > 0.750). The IV-LR model exhibited the highest accuracy, with an AUC of 0.848. When comparing the accuracy among the models, it is evident that the coupling models outperformed the individual statistical models. Based on the results of the six models, a landslide susceptibility map was generated, categorized into five levels. High and very high landslide risk zones are mainly concentrated in the eastern and southeastern regions, covering nearly half of Sichuan Province. Medium-risk areas form linear distributions from northeast to southwest, occupying a smaller proportion of the area. Extremely low- and low-risk zones are predominantly located in the western and northwestern regions. The density of the landslide points increases with higher risk levels across the regions. This further validates the suitability of this research methodology for landslide susceptibility studies on a large scale. Consequently, this methodology can provide crucial insights for landslide prevention and mitigation efforts in this region.

Funder

China Geological Survey

High-Resolution Earth Observation System of China

Shandong Province Culture and Tourism Research Project of China

Zibo City Social Science Planning Research Project of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3