Optimization of Solids Concentration in Iron Ore Ball Milling through Modeling and Simulation

Author:

Faria Patricia M. C.,Rajamani Raj K.,Tavares Luís M.ORCID

Abstract

Important advances have been made in the last 60 years or so in the modeling of ball mills using mathematical formulas and models. One approach that has gained popularity is the population balance model, in particular, when coupled to the specific breakage rate function. The paper demonstrates the application of this methodology to optimize solids concentration in ball milling of an iron ore from Brazil. The wet grinding experiments were conducted in bench (0.25 m diameter) and pilot-scale mills (0.42 m diameter), and surveys in a full-scale industrial (5.2 m diameter) mill. It is first demonstrated that the successful application of the model required recognizing the non-normalizable nature of the breakage function of the particular ore. It is then demonstrated how the model can be used to predict results of pilot-scale grinding tests under different conditions (overflow/grate discharge) based on data from batch grinding tests. Finally, the model is used to predict the effect of changing solids concentration inside the industrial mill, with good correspondence between the pilot plant and full-scale results, which demonstrated the benefit of reducing solids concentration to values between 76 and 80% in weight for the ore of interest from the 83% that was originally used in the operation.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference26 articles.

1. Prediction of Size-Weight Distribution from Selection and Breakage Data;Austin,1962

2. A solution to the batch grinding equation

3. The zero order production of fine sizes in comminution and its implications in simulation;Herbst;Trans. SME-AIME,1968

4. Population Balance Models for the Design of Continuous Grinding Mills;Herbst,1973

5. Estimill—A Program for Grinding Simulation and Parameter Estimation with Linear Models, Program Description and User Manual;Herbst,1977

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3