Development of Numerical Modelling Techniques for Composite Cylindrical Structures under External Pressure

Author:

Sohn Jung Min,Hirdaris SpyrosORCID,Romanoff Jani,Kim Sang JinORCID

Abstract

Submarine hulls are pressure vessels for which excellent structural integrity under underwater pressure loads is essential. The use of light-weight materials contributes to reduced fuel consumption, improved speed, and increased payload while strength properties are retained. The focus of this paper is on the collapse behavior of a filament-wound cylindrical structure that serves as the main hull of a submarine subject to hydrostatic pressure loads. This paper presents a computational modelling approach for the prediction of the collapse behavior mechanism using a commercial finite element (FE) solver. The collapse strength obtained from the numerical model corresponded closely to available experimental data. The composite and aluminum material models were compared and the effects of stacking angle and thickness portion in the ply sequence on collapse strength were investigated. The advantages and disadvantages of available design codes (i.e., American Society of Mechanical Engineers (ASME) BPVC-X and National Aeronautics and Space Administration (NASA) SP-8007) were reviewed by direct comparison with numerical results. It is concluded that the application of effective engineering constants for the prediction of the collapse pressure of submarine hulls may be feasible.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3