Numerical Investigation into GFRP Composite Pipes under Hydrostatic Internal Pressure

Author:

Sebeay Tamer Ali12ORCID,Ahmed Azzam34ORCID

Affiliation:

1. Engineering Management Department, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia

2. Mechanical Design and Production Department, Faculty of Engineering, Zagazig University, Zagazig, Sharkia, Egypt

3. Department of the Textile Engineering, College of Engineering and Technology of Industries, Sudan University of Science and Technology, Khartoum, Sudan

4. Safat College of Science and Technology, HG6V+RP2, Khartoum, Sudan

Abstract

Glass-fiber-reinforced plastic (GFRP) composite pipes are used extensively in high-performance applications, due to their high stiffness and strength, corrosion resistance, and thermal and chemical stability. In piping, composites showed high performance due to their long service life. In this study, glass-fiber-reinforced plastic composite pipes with [±40]3, [±45]3, [±50]3, [±55]3, [±60]3, [±65]3, and [±70]3 fiber angles and varied pipe wall thicknesses (3.78–5.1 mm) and lengths (110–660 mm) were subjected to constant hydrostatic internal pressure to obtain the pressure resistance capacity of the glass-fiber-reinforced plastic composite pipe, hoop and axial stress, longitudinal and transverse stress, total deformation, and failure modes. For model validation, the simulation of internal pressure on a composite pipe installed on the seabed was investigated and compared with previously published data. Damage analysis based on progressive damage in the finite element model was built based on Hashin damage for the composite. Shell elements were used for internal hydrostatic pressure, due to their convenience for pressure type and property predictions. The finite element results observed that the winding angles from [±40]3 to [±55]3 and pipe thickness play a vital role in improving the pressure capacity of the composite pipe. The average total deformation of all designed composite pipes was 0.37 mm. The highest pressure capacity was observed at [±55°]3 due to the diameter-to-thickness ratio effect.

Funder

Prince Sultan University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3