Effects of Different Slope Limiters on Stratified Shear Flow Simulation in a Non-hydrostatic Model

Author:

Hu Lihan,Xu Jin,Wang Lingling,Zhu Hai

Abstract

To simulate the dynamical structures of stratified shear flows, the high-resolution Total Variation Diminishing (TVD) method is necessary and widely-used due to its high-order spatial accuracy, oscillation control, and ability to capture the well-defined structures of vortices. Lack of understanding the TVD slope limiters usually results in inaccurate numerical simulation on stratified shear flows in terms of shear instability and spatiotemporal variations of mixing. In this study, the performances of four typical TVD slope limiters, namely the minmod, van Leer, Monotonized Central (MC), and superbee limiters, were investigated on modelling stratified shear flows based on the open-source non-hydrostatic model, NHWAVE. The four slope limiters are all commonly-used and have the typical numerical characteristics. All the limiters were respectively applied in two classical test cases, namely, shear instability and lock-exchange problem. The simulation results showed that the effects of slope limiters were correlated with their characteristics of numerical dissipation (or anti-dissipation), which can influence notably the model predictions of the generation of shear instability, the development of interfacial structures, and the mixing process. In the test cases, MC limiter’s performance was the best, because it could simulate the well-defined structures of instability while not introducing noticeable error. Minmod has an excessively large dissipation, which introduced noticeable numerical errors that can influence the model accuracy and can even suppress or omit the generation of interfacial vortices. Superbee limiter, the most anti-dissipative one, usually over-predicted the instability and mixing effects in time and space domain, and was likely to cause computational instability in some cases. The performances of van Leer and MC were similar, but their predictions of the evolutions of interfacial structures and mixing could be significantly different. Besides, the co-effects of grid resolution and slope limiters were also investigated; it was found that the refinement of grids may not help to reproduce a higher-quality result with a specific slope limiter.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

the 111 Project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3