Density Stratification, Turbulence, but How Much Mixing?

Author:

Ivey G.N.1,Winters K.B.2,Koseff J.R.3

Affiliation:

1. School of Environmental Systems Engineering, University of Western Australia, Nedlands, Australia 6008;

2. Scripps Institution of Oceanography, La Jolla, California 92307

3. Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305-4020

Abstract

We examine observations of turbulence in the geophysical environment, primarily from oceans but also from lakes, in light of theory and experimental studies undertaken in the laboratory and with numerical simulation. Our focus is on turbulence in density-stratified environments and on the irreversible fluxes of tracers that actively contribute to the density field. Our understanding to date has come from focusing on physical problems characterized by high Reynolds number flows with no spatial or temporal variability, and we examine the applicability of these results to the natural or geophysical-scale problems. We conclude that our sampling and interpretation of the results remain a first-order issue, and despite decades of ship-based observations we do not begin to approach a reliable sampling of the overall turbulent structure of the ocean interior.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 313 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3