A Comprehensive Correlation Study of Structured Soils in Coastal Area of South China about Structural Characteristics

Author:

Lin Chunxiu,Xia Chang,Liu ZhenORCID,Zhou Cuiying

Abstract

Granite residual soil is a common engineering material, and its mechanical properties are of great importance to engineering safety. This kind of soil presents obvious structural characteristics, and many researchers have emphasized the significance of its structural features. According to previous experiments, from a macroscopic perspective, many researchers have investigated the structural relationship between undisturbed and remolded soils, but few studies have considered it in the mesoscopic aspect. Adopting DEM (a mesomechanical simulation method), we can study how the structure affects the mechanical process between undisturbed and remolded soil. Therefore, this paper combines DEM with laboratory tests to study the structural characteristic correlation between undisturbed and remolded soil. The results indicate that a weak cohesion effect exists in undisturbed soil, and the damage of weak cohesion elements accompanies the failure process. Weak cohesion elements in undisturbed soil cause inhomogeneities in deformation, stress state, and damage accumulation, which ultimately causes differences in strength curves. This paper explains the mechanism of the structural effect on mechanical evolution from a mesomechanical perspective. The DEM simulation method proposed in this paper can be applied to structured soils and better guide engineering practice.

Funder

Science and Technology Planning Project of Guangdong Province, China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference20 articles.

1. A triaxial test study on structural granite residual soil;Wang;Rock Soil Mech.,2021

2. Drained probing triaxial tests on a weakly bonded artificial soil

3. The definition of yield for bonded materials

4. The general and congruent effects of structure in natural soils and weak rocks

5. Soil Structure characteristics and new approach in research on its quantitative parameter;Xie;Chin. J. Geotech. Eng.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3