A Coupled Tensor–DEM–FEM Model for the Whole Process of Internal Fine-Scale Damage to Surface Damage in Red-Bed Soft Rocks in the Coastal Area of South China

Author:

Xia Chang12,Wu Yongtao12,Cui Guangjun3,Liao Jin12,Liu Zhen12ORCID,Zhou Cuiying12

Affiliation:

1. School of Civil Engineering, Sun Yat-sen University, No. 135 Xingang West Road, Guangzhou 510275, China

2. Guangdong Engineering Research Centre for Major Infrastructures Safety, Sun Yat-sen University, Guangzhou 510275, China

3. Institute of Estuarine and Coastal Research/Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, School of Ocean Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Calculation and characterization of the whole process of internal microscopic damage to surface damage in red-bed soft rock is a theoretical research difficulty and an urgent need for engineering safety protection. However, the current study cannot accurately and directly correlate internal and external damage. Therefore, in this paper, a coupled tensor–DEM–FEM model is proposed to deal with surface damage by indoor triaxial test digital image processing (DIC), internal damage by FJM acoustic emission study, and internal and external damage by moment tensor correlation. The study demonstrates that the whole process damage process of the red-bed soft rock peak front can be divided into six distinct phases, with early damage beginning with the elastic phase; the local strain divergence value begins to spiral out of control during the period of crack acceleration development; the overall acoustic emission intensity distribution is in the range of [−8.5, −6.3] in two dimensions and in the range of [−11, −9] in three dimensions; the R were between −40 and 40, which corresponded to the results of the indoor tests. A model has been developed that allows a direct reflection of the whole damage process. The method can be used to better understand the disaster mechanism and guide engineering practice.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3