Research on Optimal Model of Maritime Search and Rescue Route for Rescue of Multiple Distress Targets

Author:

Ho Wen-Chih,Shen Jian-Hung,Liu Chung-Ping,Chen Yung-Wei

Abstract

Coastal countries began to develop green energy, and offshore wind power equipment in coastal areas was gradually built. Since coastal wind power generation often requires carrying out maintenance between wind turbines with the assistance of service operation vessels, this situation may cause coastal areas to be prone to people falling into the water. However, traditional maritime search and rescue plans take a long time to gather information from man overboard incidents. In order to minimize injuries to people in distress, the maritime search and rescue process must be as short as possible. Despite that all the search and rescue plans are based on the concept of the shortest path, the efficient plans must not only consider the distance but also consider the cost of search and rescue. Therefore, this study established a set of practices applicable to the on-site commander (OSC) to dispatch rescue ships, as well as the planning of maritime search and rescue route models. Based on the easy-to-observe state of the target in distress, the model is analyzed and calculated by Floyd–Warshall algorithm and Grey relational analysis so as to sort the rescue plan and optimize the effect of the search and rescue route at sea. According to the simulation analysis, when the man overboard incident occurs in the coastal area, the OSC can immediately use this model to plan the best search and rescue route and dispatch a reasonable number of rescue ships.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3