Abstract
Cabbage (Brassica oleracea L. var. capitata L.) is an important vegetable crop cultivated around the world. Previous studies of cabbage gene transcripts were primarily based on next-generation sequencing (NGS) technology which cannot provide accurate information concerning transcript assembly and structure analysis. To overcome these issues and analyze the whole cabbage transcriptome at the isoform level, PacBio RS II Single-Molecule Real-Time (SMRT) sequencing technology was used for a global survey of the full-length transcriptomes of five cabbage tissue types (root, stem, leaf, flower, and silique). A total of 77,048 isoforms, capturing 18,183 annotated genes, were discovered from the sequencing data generated through SMRT. The patterns of both alternative splicing (AS) and alternative polyadenylation (APA) were comprehensively analyzed. In total, we detected 13,468 genes which had isoforms containing APA sites and 8978 genes which underwent AS events. Moreover, 5272 long non-coding RNAs (lncRNAs) were discovered, and most exhibited tissue-specific expression. In total, 3147 transcription factors (TFs) were detected and 10 significant gene co-expression network modules were identified. In addition, we found that Fusarium wilt, black rot and clubroot infection significantly influenced AS in resistant cabbage. In summary, this study provides abundant cabbage isoform transcriptome data, which promotes reannotation of the cabbage genome, deepens our understanding of their post-transcriptional regulation mechanisms, and can be used for future functional genomic research.
Funder
National Key Research and Development Program of China
Central Public-interest Scientific Institution Basal Research Fund
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis