Traditional vs. Machine-Learning Methods for Forecasting Sandy Shoreline Evolution Using Historic Satellite-Derived Shorelines

Author:

Calkoen FlorisORCID,Luijendijk ArjenORCID,Rivero Cristian RodriguezORCID,Kras EtienneORCID,Baart FedorORCID

Abstract

Forecasting shoreline evolution for sandy coasts is important for sustainable coastal management, given the present-day increasing anthropogenic pressures and a changing future climate. Here, we evaluate eight different time-series forecasting methods for predicting future shorelines derived from historic satellite-derived shorelines. Analyzing more than 37,000 transects around the globe, we find that traditional forecast methods altogether with some of the evaluated probabilistic Machine Learning (ML) time-series forecast algorithms, outperform Ordinary Least Squares (OLS) predictions for the majority of the sites. When forecasting seven years ahead, we find that these algorithms generate better predictions than OLS for 54% of the transect sites, producing forecasts with, on average, 29% smaller Mean Squared Error (MSE). Importantly, this advantage is shown to exist over all considered forecast horizons, i.e., from 1 up to 11 years. Although the ML algorithms do not produce significantly better predictions than traditional time-series forecast methods, some proved to be significantly more efficient in terms of computation time. We further provide insight in how these ML algorithms can be improved so that they can be expected to outperform not only OLS regression, but also the traditional time-series forecast methods. These forecasting algorithms can be used by coastal engineers, managers, and scientists to generate future shoreline prediction at a global level and derive conclusions thereof.

Funder

Deltares

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3