Field Information Modeling (FIM)™: Best Practices Using Point Clouds

Author:

Maalek RezaORCID

Abstract

This study presented established methods, along with new algorithmic developments, to automate point cloud processing in support of the Field Information Modeling (FIM)™ framework. More specifically, given a multi-dimensional (n-D) designed information model, and the point cloud’s spatial uncertainty, the problem of automatic assignment of point clouds to their corresponding model elements was considered. The methods addressed two classes of field conditions, namely (i) negligible construction errors and (ii) the existence of construction errors. Emphasis was given to defining the assumptions, potentials, and limitations of each method in practical settings. Considering the shortcomings of current frameworks, three generic algorithms were designed to address the point-cloud-to-model assignment. The algorithms include new developments for (i) point cloud vs. model comparison (negligible construction errors), (ii) robust point neighborhood definition, and (iii) Monte-Carlo-based point-cloud-to-model surface hypothesis testing (existence of construction errors). The effectiveness of the new methods was demonstrated in real-world point clouds, acquired from construction projects, with promising results. For the overall problem of point-cloud-to-model assignment, the proposed point cloud vs. model and point-cloud-to-model hypothesis testing methods achieved F-measures of 99.3% and 98.4%, respectively, on real-world datasets.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference69 articles.

1. IFC model viewer to support nD model application

2. Building Information Modeling (BIM) application framework: The process of expanding from 3D to computable nD

3. Building information modelling (BIM) framework for practical implementation

4. AUTODESK Revit IFC Manual: Detailed Instructions for Handling IFC Files,2018

5. IFC Standardhttps://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/schema/ifcgeometricmodelresource/lexical/ifcfacebasedsurfacemodel.htm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3