Abstract
A high-throughput screening method based on the degree of polymerization (DP) of polyhydroxyalkanoate (PHA) was developed using high-performance liquid chromatography (HPLC). In this method, PHA production was achieved using recombinant Escherichia coli supplemented with benzyl alcohol as a chain terminal compound. The cultured cells containing benzyl alcohol-capped PHA were decomposed by alkaline treatment, and the peaks of the decomposed monomer and benzyl alcohol were detected using HPLC. The DP of PHA could be determined from the peak ratio of the decomposed monomer to terminal benzyl alcohol. The measured DP was validated by other instrumental analyses using purified PHA samples. Using this system, mutants of PHA synthase from Bacillus cereus YB-4 (PhaRCYB4) were screened, and some enzymes capable of producing PHA with higher DP than the wild-type enzyme were obtained. The PHA yields of two of these enzymes were equivalent to the yield of the wild-type enzyme. Therefore, this screening method is suitable for the selection of beneficial mutants that can produce high molecular weight PHAs.
Subject
Virology,Microbiology (medical),Microbiology