A Selection of Platforms to Evaluate Surface Adhesion and Biofilm Formation in Controlled Hydrodynamic Conditions

Author:

Gomes Luciana C.ORCID,Mergulhão Filipe J. M.ORCID

Abstract

The early colonization of surfaces and subsequent biofilm development have severe impacts in environmental, industrial, and biomedical settings since they entail high costs and health risks. To develop more effective biofilm control strategies, there is a need to obtain laboratory biofilms that resemble those found in natural or man-made settings. Since microbial adhesion and biofilm formation are strongly affected by hydrodynamics, the knowledge of flow characteristics in different marine, food processing, and medical device locations is essential. Once the hydrodynamic conditions are known, platforms for cell adhesion and biofilm formation should be selected and operated, in order to obtain reproducible biofilms that mimic those found in target scenarios. This review focuses on the most widely used platforms that enable the study of initial microbial adhesion and biofilm formation under controlled hydrodynamic conditions—modified Robbins devices, flow chambers, rotating biofilm devices, microplates, and microfluidic devices—and where numerical simulations have been used to define relevant flow characteristics, namely the shear stress and shear rate.

Funder

Fundação para a Ciência e a Tecnologia

FCT/MCTES

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The interplay between bacterial biofilms, encrustation, and wall shear stress in ureteral stents: a review across scales;Frontiers in Urology;2024-01-16

2. Preface;ACS Symposium Series;2023-12-13

3. Editors’ Biographies;ACS Symposium Series;2023-12-13

4. Subject Index;ACS Symposium Series;2023-12-13

5. Title, Copyright, Foreword;ACS Symposium Series;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3