Carbon Monoxide Induced Metabolic Shift in the Carboxydotrophic Parageobacillus thermoglucosidasius DSM 6285

Author:

Aliyu HabibuORCID,Kastner Ronnie,Maayer Pieter deORCID,Neumann AnkeORCID

Abstract

Parageobacillus thermoglucosidasius is known to catalyse the biological water gas shift (WGS) reaction, a pathway that serves as a source of alternative energy and carbon to a wide variety of bacteria. Despite increasing interest in this bacterium due to its ability to produce biological hydrogen through carbon monoxide (CO) oxidation, there are no data on the effect of toxic CO gas on its physiology. Due to its general requirement of O2, the organism is often grown aerobically to generate biomass. Here, we show that carbon monoxide (CO) induces metabolic changes linked to distortion of redox balance, evidenced by increased accumulation of organic acids such as acetate and lactate. This suggests that P. thermoglucosidasius survives by expressing several alternative pathways, including conversion of pyruvate to lactate, which balances reducing equivalents (oxidation of NADH to NAD+), and acetyl-CoA to acetate, which directly generates energy, while CO is binding terminal oxidases. The data also revealed clearly that P. thermoglucosidasius gained energy and grew during the WGS reaction. Combined, the data provide critical information essential for further development of the biotechnological potential of P. thermoglucosidasius.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3