The effects of synthesis gas feedstocks and oxygen perturbation on hydrogen production by Parageobacillus thermoglucosidasius

Author:

Mol Michael,Ardila Magda Stephania,Mol Bronwyn Ashleigh,Aliyu Habibu,Neumann Anke,de Maayer Pieter

Abstract

Abstract Background The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius is able to produce hydrogen gas (H2) through the water–gas shift (WGS) reaction. To date this process has been evaluated under controlled conditions, with gas feedstocks comprising carbon monoxide and variable proportions of air, nitrogen and hydrogen. Ultimately, an economically viable hydrogenogenic system would make use of industrial waste/synthesis gases that contain high levels of carbon monoxide, but which may also contain contaminants such as H2, oxygen (O2) and other impurities, which may be toxic to P. thermoglucosidasius. Results We evaluated the effects of synthesis gas (syngas) mimetic feedstocks on WGS reaction-driven H2 gas production by P. thermoglucosidasius DSM 6285 in small-scale fermentations. Improved H2 gas production yields and faster onset towards hydrogen production were observed when anaerobic synthetic syngas feedstocks were used, at the expense of biomass accumulation. Furthermore, as the WGS reaction is an anoxygenic process, we evaluated the influence of O2 perturbation on P. thermoglucosidasius hydrogenogenesis. O2 supplementation improved biomass accumulation, but reduced hydrogen yields in accordance with the level of oxygen supplied. However, H2 gas production was observed at low O2 levels. Supplementation also induced rapid acetate consumption, likely to sustain growth. Conclusion The utilisation of anaerobic syngas mimetic gas feedstocks to produce H2 and the relative flexibility of the P. thermoglucosidasius WGS reaction system following O2 perturbation further supports its applicability towards more robust and continuous hydrogenogenic operation.

Funder

South African CSIR-DSI Interprogramme Bursary scheme

Bundesministerium für Bildung und Forschung (BMBF) Bioökonomie International

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3